EXPERIMENT DESIGN PROCESS

ADITYA PHARMACY COLLEGE

"There's a flaw in your experimental design. All the mice are scorpios." PRESENTED BY: G.SRIDEVI Emp ID: 2940 M.PHARMACY I-II SEM SUBJECT: FDPC • EXPERIMENT DESIGN PROCESS:

TYPES OF DOE:

- o One Factorial
- o Full Factorials
- o Fractional Factorials
- o Screening Experiments
- o Plackett-Burman Designs
- o Taguchis Orthogonal Arrays
- o Response Surface Analysis

ONE FACTORIAL METHOD:

One factorial experiments look at only one factor having an impact on output at different factor levels.
The factor can be qualitative or quantitative.
In the case of qualitative factors (e.g. different suppliers, different materials, etc.), no predictions can

be performed outside the tested.

• Each level of the factor is investigated to see if the response is significantly different from the response at other levels of the factor.

FULL FACTORIAL METHOD: Full factorial experiments look

completely at all factors included in the experimentation.

- •In full factorials, all of the possible combinations that are
- associated with the factors and their levels are studied.
- The effects that the main factors and all the interactions between factors are measured.
- If we use more than two levels for each factor, we can also
- study whether the effect on the response is linear or if there
- is curvature in the experimental region for each factor and for
- the interactions.

Full factorial experiments can require many experimental runs

if many factors at many levels are investigated.

2. FACTORIAL METHOD: The simplest of the two level factorial experiments is the design where two factors (say factor A and factor B) are investigated at two levels. A single replicate of this design will require four runs.

Consider 2 factors A & B, so there will be 4 combinations

(2²)Say, 2 levels each Hi (+1) and low(-1)

So the possible combinations are illustrated in the below table:

Run #	Α	В	Response
1	+	+	30
2	+	-	50
3	-	+	10
4	-	-	20

Main effect of A = Mean response at+ level – Mean response at - level = (30+50)/2 -(10+20)/2 = 40 - 15 = 25Main effect of B = Mean response at+ level – Mean response at - level = (30+10)/2 -(50+20)/2 = 20 - 35 = -15

2 FACTORIAL METHOD:

Run #	Α	В	Response
1	+	+	30
2	+	-	50
3	-	+	10
4	-	-	20

- Interaction effect of A*B
- = Mean response at+ level –
- Mean response at -level
- = (30+20)/2 (50+10)/2 = 25 - 30 = -5
- Interaction is obtained by multiplying the factors involved

Run #	Α	В	Response
1	+	+	33
2	+	-	56
3	-	+	16
4	-	-	26

EXAMPLE:

ista <u>n</u> t	
<u>M</u> easurement Systems Analysis (MSA)	🔁 i 🚛 i 📲 🖬 🔒 🕻 1
Capa <u>b</u> ility Analysis	M
<u>G</u> raphical Analysis	
<u>H</u> ypothesis Tests	
Regression	ort
<u>D</u> OE •	Plan and Create
	iista <u>n</u> t <u>M</u> easurement Systems Analysis (MSA) Capa <u>b</u> ility Analysis <u>G</u> raphical Analysis <u>H</u> ypothesis Tests <u>R</u> egression <u>D</u> OE

- ➢Go to Standard tool Bar
- ► Move cursor to **DOE**
- Select Plan and

➤Create

Create Modeling Design

Response
Enter the name of your response variable:
What is your response goal? None
,
Factore
Factors
Number of <u>f</u> actors: 2
,
Enter your factor names and settings:

Name	Туре		Low	High
Trns per day	Continuous	•	8	78
Pross per dy	Continuous	•	3	6

Replicates		
Adding replicates allows you to detect smaller effect sizes.		
Number of replicates: 4		
Number of runs		
Total number of center points in your design: 6		
Total number of runs in your design: 22		
	<u>O</u> K	Cancel

•Enter the Name of the Response Variable (or leave as is as **Response**)

•Select the Goal

x

- Select Factors as 2
- Enter Factor Names and **Settings**
- Enter the No. of replicates (here it is 4)

• No. of runs auto populate based on factors and replicates

Create Modeling Design Summary Report

Experimental Goal

Construct a model that describes the relation ship between the response and critical factors. If the model is adequate, use it to find optimal settings for the factors.

Effect Estimation

This design will estimate all linear main effects and two-way interactions.

Design Information

Response	Response
Goal	Not specified
Base design	2 factors, 4 runs
Replicates	4
Center points	6
Total runs	22

Replicate pairs are placed in separate blocks.

Detection Ability What effect sizes can you detect with this 4-replicate design?

< 40%	60%	Power	80%	100%
	0.99	Effect	1.30	

You have an 80% chance of detecting effects of 1.30 standard deviations or more. With 6 replicates, you can detect effects of 1.04.

Factors and Settings

Factor	Low	High	
Trns per day	8	78	
Pross per dy	3	6	Effect Size (Shift in the Mean) Small Moderate Large
			<pre>< 1 std dev shift 1-2 std dev shift 2+ std dev shift</pre>

- Modeling Design, Graph would appear with below details
- •Experimental Goal, Design Information Factors and Settings
- Effect Estimation , Detection Ability

C1	C2	C3	C4	C5	C6	C7 🗾
StdOrder	RunOrder	CenterPt	Blocks	Trns per day	Pross per dy	Response
22	4	0	2	43	4.5	98
14	5	1	2	8	6.0	53
20	6	0	2	43	4.5	67
13	7	1	2	78	3.0	88
18	8	1	2	8	6.0	65
12	9	1	2	8	3.0	70
16	10	1	2	8	3.0	82
17	11	1	2	78	3.0	99
9	12	0	1	43	4.5	87
8	13	1	1	78	6.0	67
4	14	1	1	78	6.0	54
2	15	1	1	78	3.0	83
7	16	1	1	8	6.0	97
1	17	1	1	8	3.0	65
3	18	1	1	8	6.0	72
5	19	1	1	8	3.0	89
6	20	1	1	78	3.0	91
10	21	0	1	43	4.5	79
11	22	0	1	43	4.5	67

Enter your responsesin Response column (C7)

	<u>Measurement Systems Analysis (MSA)</u> Capa <u>b</u> ility Analysis <u>G</u> raphical Analysis <u>Hypothesis Tests</u> Regression	1	fx 🗄 🔚 🕌	۔ ۲ ۱۱
DOE Plan and Create Plan and Create Analyze and Interpret			<u>P</u> lan and Create Analyze and Interpret	

Go to Standard tool Bar

Move cursor to **DOE**

Select Analyze and

nterpret

From below popup select Fit Liner Model

Fit Linear Model for Response Summary Report

Pross per dy

The red line is the effect size at the 0.10 level of significance. Gray bars represent non-significant terms that were removed from the model. Main effects for factors included in interactions are never removed.

21.20% of the variation in Response can be explained by the model.

Design Information	
Base design	2 factors, 4 runs
Replicates	4
Center points	6
Total runs	22
Blocks	2
Optimal Factor Settings	Predicted Y

6

69.625

Comments

You can conclude that there is a relationship between Response and the factors in the model at the 0.10 level of significance.

The blue bars in the Pareto chart represent the terms that are included in the model.

Your goal is to minimize Response. Using the optimal settings for the factors included in the model, the predicted value of Response is 69.625.

The model explains 21.20% of the variation in Response.

From below popup

select *Minimize the*

response and click OK

summary Report you can identify signifying factors from Pareto chart Here it is B i.e., Processors per day has more impact than no. of transactions per day on Quality scores % of Variation design info Optimal factor setting

From below chart we can understand the Main effect and Interaction effect \succ It shows, transactions per day has less significant compared to Processors per day The AB interaction plot also nearly significant

Fractional Factorial method:

- •Fractional factorials look at more factors with fewer runs.
- •Using a fractional factorial involves making a major assumption – that higher order interactions (those between three or more factors) are not significant.
- •Fractional factorial designs are derived from full factorial matrices by substituting higher order interactions with new factors.
- •To increase the efficiency of experimentation, fractional factorials give up some power in analyzing the effects on the

response. Fractional factorials will still look at the main factor

effects, but they lead to compromises when looking into

interaction effects. This compromise is called confounding.

Screening Experiments:

Screening experiments are the ultimate fractional factorial experiments.

These experiments assume that all interactions, even two-

way interactions, are not significant.

They literally screen the factors, or variables, in the process

and determine which are the critical variables that affect the

process output.

- There are two major families of screening experiments:
- Drs. Plackett and Burman developed the original family of screening experiments matrices in the 1940s.
- Dr. Taguchi adapted the Plackett–Burman screening designs.
- He modified the Plackett-Burman design approach so that
- the experimenter could assume that interactions are not significant, yet could test for some two-way interactions at the same time.

Create	e Scre	ening	Design
			-

esponse and factors	
Enter the name of your <u>r</u> esponse variable:	Response
Number of factors: 6	

Enter your factor names and settings:

Name	Туре		Low	High		
Experience	Continuous	•		1		10
Shift	Continuous	•		1		3
Education	Categorical	•	UG		PG	
Transactions	Continuous	•		10		50
Gender	Categorical	•	A		В	
Age	Continuous	•		25		40

Number of runs

Adding runs allows	you to detect	smaller	effect	sizes.
--------------------	---------------	---------	--------	--------

Total number of runs in your design: 12

_

OK

Cancel

Enter the Name of

the Response Variable

(or leave as is as

Response)

Select Factors as 6

Enter Factor Names

and Settings

Select the No. of runs

Click OK

Create Screening Design Summary Report

Experimental Goal

Reduce the number of factors down to the critical few that have the greatest influence on the response.

Response

12

6 factors, 12 runs

Design Information

Response Base design Total runs

Factors and Settings

Factor	Low	High	
Experience	1	10	
Shift	1	3	
Transactions	10	50	
Age	25	40	
Education	UG	PG	
Gender	A	B	

Effect Estimation This design will estimate the linear main effects for all factors. Interactions will not be estimated with this design.

Main effect: Describes how the response (Y) changes if you change the setting of one factor (X).

deviations or more. With 24 runs, you can detect effects of 1.06.

Modeling Design Graph would appear with below details **Experimental Goal Design Information** Factors and Settings **Effect Estimation**

Detection Ability

C1	C2	C3	C4	C5	C6	C7	C8	C9-T	C10-T	C11 🖉
StdOrder	RunOrder	PtType	Blocks	Experience	Shift	Transactions	Age	Education	Gender	Response
1	1	1	1	10	1	50	25	UG	Α	66
9	2	1	1	1	1	10	40	PG	В	82
5	3	1	1	10	3	10	40	PG	Α	62
10	4	1	1	10	1	10	25	PG	В	71
6	5	1	1	10	3	50	25	PG	В	60
8	6	1	1	1	1	50	40	PG	Α	91
3	7	1	1	1	3	50	25	PG	Α	70
12	8	1	1	1	1	10	25	UG	Α	97
11	9	1	1	1	3	10	25	UG	В	56
2	10	1	1	10	3	10	40	UG	Α	72
4	11	1	1	10	1	50	40	UG	В	91
7	12	1	1	1	3	50	40	UG	В	73

Enter your responses in Response column (C11), Quality scores

From below popup select Yes

summary Report

you can identify signifying

from Pareto chart

Here it is Shift i.e.,

shift has more impact on

Scores % of Variation design

info

R-sa = 47.65%47.65% of the variation in Response can be explained by the model.

100%

0%

- From below chart we can understand the Main effect
- It shows, Shift of day has higher impact on Quality score
- The Factors shown in gray background are statistically
- insignificant and can be ignored from analysis.

Response Surface Analysis (RSM):

- RSM explores the relationships between several explanatory
- variables and one or more response variables.
- The method was introduced by G. E. P. Box and K. B. Wilson in 1951.
- The main idea of RSM is to use a sequence of designed
- experiments to obtain an optimal response.
- Response surface analysis is an off-line optimization technique.
- Usually, 2 factors are studied; but 3 or more can be studied.

With response surface analysis, we run a series of full factorial

experiments and map the response to generate mathematical

equations that describe how factors affect the response.

